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Two research opportunities

• Compilation for high-performance
embedded systems

• Compilation for heterogeneous, 
networked computers-Internet 
computing



Compilation for Embedded 
Systems

• Why is this important?
– Embedded systems are key building 

blocks of vital national infrastructure
– Embedded processors are key 

components in a wide array of 
consumer devices



Compilation for Embedded 
Systems

• What’s the problem?
– Mainframe/desktop compilation 

paradigm is inadequate for embedded 
systems

• Result
– Embedded software is still written in 

assembly language
• Higher development and maintenance costs
• Slower time to market
• Hinders innovation



Compilation for Embedded 
Systems

• Why is compilation for embedded 
systems hard(er)?
– Many processor variants each with 

special features
– Cross-cutting constraints of speed, 

power, and size
– Very performance and cost sensitive
– Custom and semi-custom processors



Compilation for Networked 
Systems

• Why is this important?
– Duh!!
– Internet computing
– Ubiquitious computing (clusters, motes, 

swarms, hives, herds)



Compilation for Networked 
Systems

• What’s the problem?
– Mainframe/desktop compilation 

paradigm is inadequate for networked 
systems

• Result
– The potential of networked systems has 

not been fully realized



Compilation for Networked 
Systems

• Why is compilation for networked 
systems hard(er)?
– Heterogeneous platforms
– Dynamic environment (changing QoS

and resources)
– Code is injected dynamically from 

different sources
– Often working at the binary level
– Continuous operation



Meeting these challenges

• Move from static to more dynamic 
compilation approaches



Meeting these challenges

• Embedded systems: new compilation 
framework
- Adaptive compilation-compiler 

configured at compile-time for 
application and target

- Different granularities of compilation
- New optimization algorithms



VISTA

• Framework for building reconfigurable, 
adaptive compilers
– Optimization backplane for compile-time 

flexibility
– Language for compile-time configuration of the 

backplane
– Constraint language for specifying code 

requirements
– Interactive system for viewing and controlling 

and understanding optimizer actions
– Varying granularity of optimization (program, 

function, loop, basic block(s))



Meeting these challenges

• Networked computing: software dynamic 
translation (SDT) (alteration of a running 
program to achieve some objective)
– Improve performance (Dynamo)
– Overcome economic barriers to hardware 

innovation (Transmeta)
– Apply application-specific ISA improvements
– Adapt to changes (power, QoS, resource 

availability)
– Improve security and robustness of code



Strata: Retargetable SDT 
Framework

• Base VM implements 
a simple SDT 
providing common 
services

• Programmer 
implements new SDTs
by customizing the 
VM

• VM is customized by 
overriding functions 
in the target interface

• Currently targeted to 
SPARC and MIPS. 
ARM and X86 next
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Research challenges 
(Partial)

• Adaptive/reconfigurable compilation
– New optimization approaches/algorithms
– Strategies for automatically configuring the  

compiler
– Better MDs

• Software dynamic translation
– Innovative applications of SDT (security, fault 

tolerance, correctness, code compression)
– Reducing SDT overhead
– Performance analysis and use
– Hardware support for SDT
– Better binary-level tools


